Jul 18

Boosting Visible-Light-Driven Photocatalytic Hydrogen Evolution with an Integrated Nickel Phosphide–Carbon Nitride System

A. Indra, A. Acharjya, P. W. Menezes, C. Merschjann, D. Hollmann, M. Schwarze, M. Aktas, A. Friedrich, S. Lochbrunner, A. Thomas, M. Driess,
Angew. Chem. Int. Ed. 2017, 56, 1653
DOI: 10.1002/anie.201611605

Solar light harvesting by photocatalytic H2 evolution from water could solve the problem of greenhouse gas emission from fossil fuels with alternative clean energy. However, the development of more efficient and robust catalytic systems remains a great challenge for the technological use on a large scale. Here we report the synthesis of a sol–gel prepared mesoporous graphitic carbon nitride (sg-CN) combined with nickel phosphide (Ni2P) which acts as a superior co-catalyst for efficient photocatalytic H2 evolution by visible light. This integrated system shows a much higher catalytic activity than the physical mixture of Ni2P and sg-CN or metallic nickel on sg-CN under similar conditions. Time-resolved photoluminescence and electron paramagnetic resonance (EPR) spectroscopic studies revealed that the enhanced carrier transfer at the Ni2P–sg-CN heterojunction is the prime source for improved activity.

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>